
AC?@ nTOTES 

A &mmary of the ACME System 
(Presentation given at the ONR Computer and 
Psychobiology Conference May 1'7, 1966 at 
the U.S. Navy Postgraduate School, 
Monterey, California) 

AS-1 

Gio Wiederhold 

May 26, 1966 

The ACME computer system at the Stanford Medical School is designed to 
provide powerful computing to research laboratories in the Medical School. 
The type of computation service planned is regular batch processing (mainly 
at night) and real time interactive capability for on line experiments. 
The remainder of this description will concern itself with the proposed 
implementation of this latter facility. 

In order to accommodate all the laboratories in the Medical School with 
their widely varying data rates, the system is designed to share the avail- 
able computer time. The amount of time allotted to a user, however, is not 
one fixed unit per period, i.e. 200 ms every 10 seconds, but rather the 
time required by him to acquire and process one data point. 

The data can be obtained in a number of different ways (see appendix 
CN-2, SK-%): 

Data may be typed on a typewriter station. Al.1 textual and programming 
information is entered this way. 

Slow to medium speed (up to 1000 samples/second) analog signals can be 
entered via a subsidiary computer which can either scan input voltages 
at the lOOO/second rate or respond to separate interrupt signals given by 
the experiment or experimenter. The precision of the conversion can be 
up to 14 bits (.02$) precise. This computer will convert, reformat and 
preprocess these data and then transmit Ynem to the main computer. 

Digital input up to 16 bits wide can be handled in a manner similar to the 
analog input with the subsidiary computer, in order to serve users that 
have their own digitizing equipment or whose experiments actually generate 
digital output. 

Users of the system with much higher rate demands, especially those that 
currently have small computers installed, will be able to connect directly 
to the main computer via a high speed (up to 125,000 samples per second) 
parallel data link. In this case they may program the interactive aspects 
of their experiments themselves, but have the resultant data processed on 
a larger machine. 



AS-1 

Page 2 

The IBM 360 Model 50 which we propose to use as the main computer has been 
chosen with a configuration that will support this type of multiple user 
activity. Its main (core) memory size is one million bytes or characters, 
or 250,000 words or values. The backup storage is an IBM pie file, which 
stores data on strips of magnetic tape, 2000 of them, which are all in- 
dividually retrievable within 0.6 seconds. It has a total capacity of 400 
million bytes. The subsidiary computer proposed is an IBM 1800 process 
control computer, connected via a special direct channel to the main com- 
puter. 

Results may be listed on the system printer, of course, but the emphasis 
will be on typing out the results on the typewriters in the laboratories. 

Data may also be returned in analog or digital form via the 1800 at rates 
comparable to those of the input capability; generally within a few seconds 
after the results have been produced inside the Model 50. The digital lines 
may be used to drive plotters producing graphical summaries of the experi- 
ments. Display equipment of various types can be installed in the labora- 
tories and be driven from the analog or digital 1800 outputs. 

The small computers can also be used to distribute output via their type- 
writer, display tubes and plotters, or they may use the results to auto- 
matically control the continuation of the experiments. 

It is quite obvious that a system of the described scope is not supported 
by any computer manufacturer, We are therefore designing and writing a 
simple but complete support package including an interactive compiler, a 
supervisory system, input-output procedures and data acquisition and dis- 
tribution routines. The system design is such that continuous guidance is 
provided to the user via the typewriter (see ACME note RC-1 and appendix 
RU-1). 

To make such an approach at all economically possible, we are programming 
using an IBM compiler (FORTRAN H) to allow us to write the system within 
the allotted time span. This should also make it possible to later share 
the results of our software development work with others. The language 
that our system will compile and which we hope will be acceptable to our 
non-computer specialist users is a subset of P&l, a FORTRAN like proce- 
dural language, defined by IBM for use on 360 systems. Thus we hope that 
procedures checked and proven on our interactive compiler can be filed and 
used on ours and other computer libraries under standard systems (see 
ACME; note on PL-1: P&l). 

The input-output system will include file handling and retrieval facili- 
ties where all data filed will be automatically labelled with all perti- 
nent information to optimize the usefulness of the collected information. 
No elaborate buffering procedures will be u::ed to minimize a user's inac- 
tive time, rather the time that he cannot use for computation will be 
turned over to the next user in the queue. 



AS-1 

Page 3 

Since for some experiments the system reaction time will be quite critical, 
we will have to limit the number of these users in a given period. An 
attempt to utilize every available computer cycle for this work can only 
result in system overloading and failure. However, a number of users with 
non-critical problems, routine processing or information retrieval can 
balance the system to achieve reasonable total utilization, and we plan 
also to provide facilities for this type of use as soon as the more criti- 
cal uses are satisfied. 

The project currently uses several different computers around Stanford to 
check out parts of the system and is preparing to do a simulation study of 
the queuing algorithm. A small technical group is building prototype inter- 
connection equipment for the various data interfaces. 

The current planning work is sponsored by a Macy foundation planning grant 
and further funding has been requested from NIH. Much credit for ideas 
and procedures goes to other computer installations and other people, 
notably project MAC at M.I.T., MEDLAB at the Latter-Day Saints Hospital in 
Salt Lake City, the University of California at Berkeley Computation Center 
and ARPA project, U.C. San Francisco medical school, U.C.L.A. Health 
Sciences, etc., and of course the Computation Center and the Computer 
Science Department of Stanford itself. 



AS-1 

Appendix 1 

Current Work in Progress 

Design and building of interconnection between LINC and PDP-8 computers to 
the IEM 360/50 with an IBM 2701 interface (see Am Note HL-1). 

Design and building of a status display box to be used at typewriter stations 
(see ACME Notes LI-2 w). 

Design and checkout of the interactive compiler (see ACME Note P&l). 

Design of file system (see ACMJ3 Notes FI-1 and FLl). 

Programming of the input-output supervisor (see ACME Note IO-l). 

Design and checkout of typewriter control system (see ACME Note KA-1). 

Collection of information of possible display devices (Goethe Link). 

Definition of parameters for simulation of user interaction (see ACME Note 
Q?-1) l 

1800 computer software system evaluation and design. 



ACME NOTES 

CN-2 

Gio Wiederhold 

April 21, 1966 
Confiscr&?on of Machine 

pie file 2 disks 
2321 2311 

4 tapes 

&, Operator 

8~ set < yitg 
I UJOOk bytes ------------------ 

I 2702 ” ------“-----I 1800 

4*~16 bit 
parallel 

data entry 18 Selectric 
Terminals 
12 Active 

LINCS 
PDP-8s 
Other Digital 

Input 

Revision of CN-1 dated January 12, 1966 



TS NOTES 

ACME - Sketch of Proposed Svstem 

SK-2 

Gio Wiederhold 

January 17, 1966 

_I_- 
c-i System I Maintenance! 

system 
Maintenance I 

Typewriter statx 8 poss.1 act. and Digital 

50 poss. 30 active Devices 

initially 20 poss. 15 active 30 poss. 20 active 
expandable 

Model 50 

Selector Channels: 1800 

Pie, disk, tape, small computers 

Multiplexer Channels: Teletypes (2) 
Batch I/O (1 - 3) 
System Maintenance 

1800 

Revision of SK-1 dated December 13, 1965 



RU-1 

ACME NOTES 

Example of an ACME Run 

J. Miller/G. Breitbard 

April 22, 1966 

The user turns on the terminal and ACME types 
NAME? 
All statements typed by ACME are followed by a question mark. 

The user then types his name. 
NAME? BEN CASEY! 

Except when'entering a program, all statements typed by a user must be fol- 
lowed by an exclamation point. Program statements are followed by a semi- 
colon. 

The run continues as follows: 
PROJECT? RATS! 
YOU CAN BEGIN, 13:30 11 MAY, NAME OF PROGRAM? SAMPLE! 

1. ? Stats: PROCEDURE; 
? loop: 

:: ? 
GET FILE (Instrument) (value); 
n=n+l; 

4. ? sum = sum + value; 
9 

2 ; 
sum sqr = sum sqr + value+%?; 
Mea% = sum/n;- 

7. ? std dev = SQRT ((sum sqr - (sum*2/n))/(n-1)); 
8. ? PUT-FILE (Console) (1, mean, std dev); 
9. ? PUT FILE (Save) (value, mean, stz dev); 
10. ? GO TO loop; 
11. ? END Stats; 
PROGRAM SIZE 431 BYTES, PROGRAM LINES 11. 
THIS ENDS 'Stats'. RUN? 

The program Stats reads an experimental instrument, calculates the mean and 
standard deviation of the observations, types these quantities on the experi- 
menter's console, and also saves them. GET and PUT are respectively the 
input and output statements. At this point the program has been compiled 
into core memory and also saved in the user's file of programs. 

Before executing this program the user must set the initial values of n, 
sun-l, and std dev. ACME has asked whether immediate execution is desired by 
the question-RUN? A response of YES! would start the program running. 
Whenever the user does not wish to follow ACME's prompting, he indicates 
this by giving a carriaFreturn instead of typing a response. In this 
case the user gives a carriage return and types a command to set the initial 
value of n. 

n = O! 



RU-1 

Page 2 

All PL/ACME statements followed by exclamation points are executed immediately, 
and are not saved on the user's file of programs. 

?suIn=O! 
? sum sqr = O! 
? CM Stats! 

The CALL statement causes ACMYE to begin execution of the program 'Stats'. 

In the case of this example ACME will immediately type: 
ZERO DIVISOR, LINE 7. IN 'Stats'. ATTN? 

The user failed to consider the special case n = 1. The program continues to 
execute. If the user wishes to take corrective action, he may get ACME's 
attention by hitting the ATTN key. He may then stop his program, reset the 
initial values, and restart. 

? STOP! 
?n=l! 
?sum=O! 
? sum sqr = O! 
? CAL5 Stats 

or, better, he can change the program so it can handle the special case. 
To insert a line in his program, he may hit ATTN, stop his program, and type 
a line number for the line to be inserted, followed by a statement: 
? STOP! 
? 5.5 IF n = 1 CO TO loop; 

This statement will cause the computation and output to be skipped when n = 1. 
ACME will insert Line 5.5 between Lines 5. and 6. (Any line number between 
5. and 6. could have been used, e.g. 5.015). 

The user now commands ACME to resume execution of his program. 

? CALL Stats! 
n = 2. 

mean = 3.5 
std-dev = 0.713 

I-l = 3. 
mean = 4.16 

std-dev = 0.6195 
n = 4. 

And so on . . . 



RU-1 

Page 3 

The user may now decide he wants to type out these quantities only every 
hundredth time. He may also decide he wants to see the current value as well 
as themean and standard deviation. This will require changing line 8. To 
do this he simply types the line number, 8.) followed by a statement. This 
statement will replace the previous statement at line 8. However . . . 

ACME is typing output at full speed. 

To get ACME's attention, the user pushes the ATTN button on his console. 
ACME immediately interrupts what it is doing and types: 
? 

The user can then modify the program. While he is entering the new statement, 
the program will continue to run, so no data will be lost. Programs are 
stopped only by the PAUSE or STOP statements. 

? 8. IF MOD (n,lOO) = 0 THEN PUT (n, value, mean, std-dev); 

If no file is specified in the PUT statement, ACME assumes the console is 
meant. 

n = 100. 
value = 4.01 

mean = 4.2751 
std-dev = 0.3271 

n = 200. 
value = 5.62 

mean = 4.9135 
std dev = 0.7216 

LIMIT CHECK ON 'Instrument', VOLTAGE OF 6.2173 EXCEEDS LIMIT OF 6.0000. ATTN? 

ACME has detected an error in the input from the user's experimental equip- 
ment. If the user does not want to wait while ACME types out the entire 
message, he may hit the ATTN key as soon as he recognizes the message, and 
ACME will type an ellipsis followed by a question mark, and stop. 
LIMIT CHECK ON "Ins . . . ? 

The user might now stop his program and go check his equipment. Upon returning 
to the console he may decide to modify his program and restart it. 

STOP! 
? 1.1 .I?JT ('INITIAL VALUES'); 
? 1.2 GET (n, sum, sum-sqr); 
? CALL Stats! 



RU-1 

Page 4 

The program has now been modified to prompt the user to enter the initial values. 

INITIAL VALUES 
n=?O 

sum = ? 0 
sum sqr = ? 0 

n = 100 
value = 3.17 

. 

However, if he wants to execute his program without modification, he may immedi- 
ately CALL it. 

When the user is finished he logs off: 
? LOCQFF! 
LOGOFF 01:15 12 MAY. LOGON? 

If he resumes his console work another time the following sequence might occur. 

NAME? BEN CASEY! 
PROJECT? RATS! 
YOU CAN BEGIN, 9:20 13 MAY. PROGRAM NAME? Sample! 
YOU ALREADY HAVE sample' FROM 16.15, ii MAY 67. 
RUN? YES! 
INITIAL VALUES 
n=? 

The user might wish to.modif'y his program before running it. He may then 
type NO! 

RUN? NO! 
MODIFY? 

He may now type a line number and a statement. Or he may again type NO! 

MODIFY? NO! 
DELETE? YES! 
DO YOU WANT TO DELETE 'Sample' of 16:15, 11 MAY 67~ YES! 
NAME OF PROGRAM? 

ACME checks to make sure he wants to DELETE the program "Sample' from his 
file of programs. 

[A continuation of this note will be published soon, giving further examples 
of the program debugging capabilities of the ACME system.] 


